!_zmenit jazyk cz_! !_zmenit jazyk en_!
Number of items: 0 0,00 Kč
BEL shop

Controller for boiler suplying from solar panels MR4316AC NG to switchboard.

Basic description: controller for optimalized AC boiler and solar panel connection, input voltage 60 to 430 V, current 16 A. Controller has one AC output and one DC output. Power is indicated by 5 LEDs.

click to enlarge
Regulátor MR4316AC NG do rozvaděče
Regulátor MR4316AC NG do rozvaděče
pcs
Manufacturer:BEL
Price with VAT : 4 700,00 Kč
VAT:21 %
Availability:In stock
!_prehled mnozstevnich slev_!
Quantity (pcs)Price without VATPrice with VAT
1 + 3 884,30 Kč4 700,00 Kč
2 + 3 884,30 Kč3 690,10 Kč4 700,00 Kč4 465,00 Kč
5 + 3 884,30 Kč3 495,90 Kč4 700,00 Kč4 230,00 Kč
Production BEL original

Want to save money on water heating or heating? Read on. Are you a cottage owner and need to heat water in a boiler in summer and temper the building with a conventional direct-fired heater in winter? And not pay for energy? The controller is for you too. But beware, the connected device must be purely resistive without additional electronics (display, electronic thermostat, fan etc.) and must be switched off by a mechanical thermostat.

Software version 7

What is new in version 7? The wait time for the appliance to connect to the DC output has been extended to 2 minutes, it is possible to set the output voltage up to 320V (for those who want to take advantage of the maximum supply voltage and have a custom heating coil wound.), the maintenance of optimum performance between panel tests has been improved, and it is possible to have the current controller settings designaled or to reset the controller to factory settings.

The 2nd generation MR4316AC NG MPPS controller in the in-cabinet (board) version optimizes the adjustment of the resistance of the boiler heating coil and PV panels to maximize the energy recovered from the panels. It connects between the solar panel and the boiler heating coil. It is designed to be built into the switchboard with other devices such as disconnectors, surge protectors, contactors, etc. Compared to the previous generation of controllers, it has a more powerful microprocessor, finer output voltage control, higher LED luminosity on the power indicator, more efficient cooling and the possibility of connecting a temperature sensor to measure the boiler temperature.

The output voltage is AC, so the controller can be used with a conventional boiler with an AC heating coil.

A boiler with an input power of up to 3 kW (up to 4 kW with active cooling) can be connected to the output. The input voltage can be from 60 to 430 V. The controller can only reduce the output voltage, so it is necessary to select the number and power of the panels according to the voltage and power input of the load.The input current can be up to 16 A. The controller uses a new method of active search of the optimal working point (MPPS - Maximum Power Point Searching) when supplying the boiler. This method eliminates power losses compared to the MPPT method when the PV panels do not have the same characteristics, power rating, temperature changes or are not evenly illuminated. The 6 LEDs on the front panel are used to indicate power and current output. The controller has a second DC output to which power is automatically diverted (without any other intervention) from the panels in the event that the boiler is disconnected at the AC output. The controller can operate in four modes of operation, which are described in the following text. Using a button on the controller board, eight parameters can be stored in the processor memory: nominal output voltage, panel test period, boiler output connection test period, mode of operation, nominal load input, heated water volume, and minimum heating temperature.

Modes of operation of the controller:

1) priority AC output, secondary DC output: as long as a load is connected to the AC output (tested periodically), the DC output will never turn on. If the load on the AC output is disconnected, the DC output turns on (i.e. there is panel voltage on the DC output, but the controller does not regulate this voltage in any way). After a set period of time, the controller turns off the DC output and tries to test if the primary load on the AC output has reconnected. If so, it leaves the AC output on, if not, it turns the DC output back on.

2) Priority DC output, secondary AC output: as long as a load is connected to the DC output (tested periodically), the AC output will never turn on. If the load on the DC output is disconnected, the AC output turns on (i.e., the AC output is voltage regulated (MPPT). After a set period of time, the controller turns the AC output off and tries to test if the primary load on the DC output has reconnected. If so, it leaves the DC output on, if not it turns the AC output back on.
3) The AC output always has priority, the DC output is used to switch the two loads using an external contactor: as long as load 1 is connected on the AC output (tested periodically), the DC output is off. If load 1 is disconnected on the AC output, the DC output is switched on (i.e. the panel voltage appears on the DC output). This voltage supplies an external 24VDC switching power supply* to which the coil of the external contactor* is connected. The contactor switches the AC output to load 2 and the controller five regulates the output voltage (MPPT). After a set time, the controller turns off the DC output, the contactor drops out and load 1 is connected to the AC output. The controller then tries to test if load 1 is connected. If it does, it starts regulating the voltage on load 1, if not it turns on the DC output, this turns on the contactor, load 2 is connected and the controller starts regulating the voltage on load 2. Should neither load be connected, the controller uses the DC output to switch the contactor back and forth until it finds a connected load. In this mode, the DC output is only used to switch loads on the AC output.

4) Boiler on AC output, which the controller connects via an external contactor (using the DC output) to the 230 V mains voltage when there is not enough solar energy: the aim is to heat the water to the minimum selected temperature in the evening even on days when solar energy is scarce. The user sets the nominal power and volume of the boiler and the minimum required water temperature. From the values entered, the controller calculates the amount of energy required. If, during the panel test, the controller considers that the solar energy is insufficient, it switches on the DC output. An external contactor connected to this output disconnects the boiler from the AC output of the controller and connects it to the 230 V mains voltage.

* The power supply and contactor are not included in the price of the controller, but we can supply them.
Note: The controller uses pulse-width modulation, which may cause a slight humming noise from the heating coil in the boiler, which could disturb the quietness of the room in which the boiler is located.

Basic technical data:

Supply voltage: 60 to 430 V

Optimum supply voltage: 100 to 115 % of the nominal voltage of the connected appliance

Input current: maximum 16 A

Nominal boiler voltage: adjustable from 10 to 320 V

Minimum panel voltage: adjustable from 60 to 250 V

Panel test period: adjustable from 15 s to 8 minutes

Thermostat testing period: adjustable from 3 to 120 minutes

Control frequency: 122 Hz

Outputs: output 1 (AC) for connection of a conventional AC boiler, output 2 (DC) for connecting another appliance

Power indicator: five white LEDs, range 0 to 100% with 5% resolution

Dimensions: 180 x 120 x 45 mm

Temperature probe (see Related tab) can be ordered.

Optimal power supply for the controller:

Panel voltage must be neither too low nor too high. If the voltage is too low, the power of the panels cannot be pushed through to the load, too high a voltage will force the controller to operate at a disadvantage or could even damage it. The optimum supply voltage should be between 100 and 115% of the nominal load voltage (this is usually 230 V). The supply voltage is calculated as the product of the number of panels in series and their voltage at the operating point (the lower voltage value in the panel documentation). The optimum peak power of the panels (again see panel documentation) should be between 100 and 125 % of the load power. Compliance with these conditions will give the most favourable cost/energy ratio. If you are using an appliance for higher voltages than 230 V, the supply voltage can be higher (it is still recommended that the supply voltage should be 100 to 115 % of the nominal load voltage). But even in this case, the maximum number of panels in series can only be such that their no-load voltage never exceeds 430 V. The control is easy. In the panel documentation you can find the no-load voltage (this is the highest value given), multiply this by 1.15 to calculate the voltage of the panels at an outdoor temperature of -25 deg. C. Multiply the resulting voltage by the number of panels in the series. The calculated voltage must always be less than 430 V! If it is not, the number of panels must be reduced!

Related items - Controller for boiler suplying from solar panels MR4316AC NG to switchboard.

Relé PEM-01/024
Basic description: relay PEM-01/024
Availability: In stock
pcs
Price with VAT480,00
Přepěťová ochrana DS50PVS-500
Basic description: overvoltage protection DS50PVS-500.
Availability: In stock
pcs
Price with VAT2 180,00
Teplotní sonda DS18B20
Basic description: temperature digital sensor DS18B20, cable 1 m.
Availability: In stock
pcs
Price with VAT100,00
Spínaný zdroj HDN-1524
Basic description: switched source Spínaný zdroj HDN-1524.
Availability: In stock
pcs
Price with VAT400,00
Zenerova dioda SK62
Basic description: Zener diode, decreaces supply voltage of switch source for 62 volts when panels voltage is over 370V.
Availability: In stock
pcs
Price with VAT5,00
Modul s ventilátory
Basic description: active cooling for controller MR4316AC NG to a switchboard
Availability: In stock
pcs
Price with VAT490,00
Zenerova dioda SK62
Basic description: Zener diode, decreaces supply voltage of switch source for 100 volts when panels voltage is over 370V.
Availability: In stock
pcs
Price with VAT5,00
Odpínač CFPV-32
Basic description: Circuit breaker CFPV-32 with fuse 16A.
Availability: In stock
pcs
Price with VAT180,00
 
Přepínač napájení SPN4316
Basic description: the switch is designed for safe switching of the boiler supply from the MR4316AC+/MR4316AC NG controllers or the 230V mains voltage.
Availability: In stock
pcs
Price with VAT1 350,00

!_potrebujete poradit ?_! BEL Controller for boiler suplying from solar panels MR4316AC NG to switchboard. BEL

!_vase jmeno, prijmeni, firma_!
Your email
Your phone number
Your question
     !_vice informaci_!




!_poslete odkaz svemu znamenu_!

Your name
Your email
your friend's email
!_opiste kod z obrazku_! antispam